Sustaining energy systems using metal oxide composites as photocatalysts

Main Article Content

Mir Sayed Shah Danish
Tomonobu Senjyu
Abdul Matin Ibrahimi
Arnab Bhattacharya
Zahra Nazari
Sayed Mir Shah Danish
Mikaeel Ahmadi


Among the various types of metal organic frameworks (MOFs), the metal-oxide-based ones fulfill all the essential criteria such as strong bonding, organic linking units, and highly crystalline nature, properties required to be effective photocatalysts to serve environmental remediation. Moreover, the even spread of active sites and semiconductor properties make the MOFs ideal for absorbing irradiation from UV as well as visible light sources. Metal oxide composites with carbon based materials, especially, show high photocatalytic activity toward the degradation of organic dyes. Considering the relatively low cost of metal oxide semiconductors compared to pure metallic nanoparticles, metal oxide composites can provide a great alternative as photocatalysts especially considering the adjustable bandgaps and synergistic effects. Therefore, the metal oxide application as the photocatalysts in industry and technology in terms of techno-economic advantage is attracted. In this study, energy sustainability and solving carbon-related issues through metal oxide-based materials are discussed. This study aims to review metal oxide composites including metal oxide-MOFs and metal oxide-carbon material compositions as photocatalysts, application, merits in environmental and energy systems performances, and its contribution as an influential factor for sustainable development.

Article Details

How to Cite
Danish, M. S. S., Senjyu, T. ., Ibrahimi, A. M. ., Bhattacharya, A. ., Nazari, Z. ., Danish, S. M. S. . and Ahmadi, M. . (2021) “Sustaining energy systems using metal oxide composites as photocatalysts”, Journal of Sustainable Energy Revolution. Okinawa, Japan, 2(1), pp. 6-15. doi: 10.37357/1068/jser.2.1.02.
Sustainable energy
Author Biographies

Mir Sayed Shah Danish, University of the Ryukyus


Tomonobu Senjyu, University of the Ryukyus


Abdul Matin Ibrahimi, University of the Ryukyus


Arnab Bhattacharya, Research and Education Promotion Association (REPA)


Zahra Nazari, Kabul Polytechnic University


Sayed Mir Shah Danish, Technical Teachers Training Academy (TTTA)


Mikaeel Ahmadi, University of the Ryukyus



Emam HE, Ahmed HB, Gomaa E, Helal MH, Abdelhameed RM (2019) “Doping of silver vanadate and silver tungstate nanoparticles for enhancement the photocatalytic activity of MIL-125-NH2 in dye degradation” Journal of Photochemistry and Photobiology A: Chemistry (vol. 383, pp. 111986)
Zhang C, Ai L, Jiang J (2015) “Graphene hybridized photoactive iron terephthalate with enhanced photocatalytic activity for the degradation of rhodamine b under visible light” Ind Eng Chem Res (vol. 54, no. 1, pp. 153–163)
Rad M, Dehghanpour S (2016) “ZnO as an efficient nucleating agent and morphology template for rapid, facile and scalable synthesis of MOF-46 and ZnO@MOF-46 with selective sensing properties and enhanced photocatalytic ability” RSC Adv (vol. 6, no. 66, pp. 61784–61793)
Wang X, Liu J, Leong S, Lin X, Wei J, et al. (2016) “Rapid construction of ZnO@ZIF-8 heterostructures with size-selective photocatalysis properties” ACS Appl Mater Interfaces (vol. 8, no. 14, pp. 9080–9087)
Mahmoodi NM, Taghizadeh A, Taghizadeh M, Abdi J (2019) “In situ deposition of Ag/AgCl on the surface of magnetic metal-organic framework nanocomposite and its application for the visible-light photocatalytic degradation of Rhodamine dye” Journal of Hazardous Materials (vol. 378, pp. 120741)
Jiang D, Xu P, Wang H, Zeng G, Huang D, et al. (2018) “Strategies to improve metal organic frameworks photocatalyst’s performance for degradation of organic pollutants” Coordination Chemistry Reviews (vol. 376, pp. 449–466)
Xie M-H, Shao R, Xi X-G, Hou G-H, Guan R-F, et al. (2017) “Metal–organic framework photosensitized TiO2 co-catalyst: A facile strategy to achieve a high efficiency photocatalytic system” Chemistry – A European Journal (vol. 23, no. 16, pp. 3931–3937)
Li H, Li Q, He Y, Zhang N, Xu Z, et al. (2018) “Facile fabrication of magnetic metal-organic framework composites for the highly selective removal of cationic dyes” Materials (vol. 11, no. 5, pp. 744)
Zhao X, Liu S, Tang Z, Niu H, Cai Y, et al. (2015) “Synthesis of magnetic metal-organic framework (MOF) for efficient removal of organic dyes from water” Sci Rep (vol. 5, no. 1, pp. 11849)
Zhang M, Qiao R, Hu J (2020) “Engineering Metal–Organic Frameworks (MOFs) for Controlled Delivery of Physiological Gaseous Transmitters” Nanomaterials (vol. 10, no. 6, pp. 1134)
Li Y, Zhou X, Dong L, Lai Y, Li S, et al. (2019) “Magnetic metal-organic frameworks nanocomposites for negligible-depletion solid-phase extraction of freely dissolved polyaromatic hydrocarbons” Environmental Pollution (vol. 252, pp. 1574–1581)
Torretta V, Katsoyiannis IA, Viotti P, Rada EC (2018) “Critical review of the effects of glyphosate exposure to the environment and humans through the food supply chain” Sustainability (vol. 10, no. 4, pp. 950)
Danish MSS, Bhattacharya A, Stepanova D, Mikhaylov A, Grilli ML, et al. (2020) “A systematic review of metal oxide applications for energy and environmental sustainability” Metals (vol. 10, no. 12, pp. 1604)
Danish MSS, Estrella LL, Alemaida IMA, Lisin A, Moiseev N, et al. (2021) “Photocatalytic applications of metal oxides for sustainable environmental remediation” Metals (vol. 11, no. 1, pp. 80)
He X, Nguyen V, Jiang Z, Wang D, Zhu Z, et al. (2018) “Highly-oriented one-dimensional MOF-semiconductor nanoarrays for efficient photodegradation of antibiotics” Catal Sci Technol (vol. 8, no. 8, pp. 2117–2123)
Moradi SE, Haji Shabani AM, Dadfarnia S, Emami S (2016) “Effective removal of ciprofloxacin from aqueous solutions using magnetic metal–organic framework sorbents: mechanisms, isotherms and kinetics” J IRAN CHEM SOC (vol. 13, no. 9, pp. 1617–1627)
Huo J-B, Xu L, Chen X, Zhang Y, Yang J-CE, et al. (2019) “Direct epitaxial synthesis of magnetic Fe3O4@UiO-66 composite for efficient removal of arsenate from water” Microporous and Mesoporous Materials (vol. 276, pp. 68–75)
Ma Y, Xu G, Wei F, Cen Y, Xu X, et al. (2018) “One-pot synthesis of a magnetic, ratiometric fluorescent nanoprobe by encapsulating Fe3O4 magnetic nanoparticles and dual-emissive rhodamine b modified carbon dots in metal–organic framework for enhanced HClO sensing” ACS Appl Mater Interfaces (vol. 10, no. 24, pp. 20801–20805)
Gu C, Xiong S, Zhong Z, Wang Y, Xing W (2017) “A promising carbon fiber-based photocatalyst with hierarchical structure for dye degradation” RSC Adv (vol. 7, no. 36, pp. 22234–22242)
Nekouei S, Nekouei F, Kargarzadeh H (2018) “Synthesis of ZnO photocatalyst modified with activated carbon for a perfect degradation of ciprofloxacin and its secondary pollutants” Applied Organometallic Chemistry (vol. 32, no. 3, pp. e4198)
Atchudan R, Edison TNJI, Perumal S, Karthik N, Karthikeyan D, et al. (2018) “Concurrent synthesis of nitrogen-doped carbon dots for cell imaging and ZnO@nitrogen-doped carbon sheets for photocatalytic degradation of methylene blue” Journal of Photochemistry and Photobiology A: Chemistry (vol. 350, pp. 75–85)
Wang F, Zhou Y, Pan X, Lu B, Huang J, et al. (2018) “Enhanced photocatalytic properties of ZnO nanorods by electrostatic self-assembly with reduced graphene oxide” Phys Chem Chem Phys (vol. 20, no. 10, pp. 6959–6969)
Jo W-K, Kumar S, Isaacs MarkA, Lee AF, Karthikeyan S (2017) “Cobalt promoted TiO2/GO for the photocatalytic degradation of oxytetracycline and Congo Red” Applied Catalysis B: Environmental (vol. 201, pp. 159–168)
Ahmed B, Ojha AK, Singh A, Hirsch F, Fischer I, et al. (2018) “Well-controlled in-situ growth of 2D WO3 rectangular sheets on reduced graphene oxide with strong photocatalytic and antibacterial properties” Journal of Hazardous Materials (vol. 347, pp. 266–278)
Gan L, Xu L, Shang S, Zhou X, Meng L (2016) “Visible light induced methylene blue dye degradation photo-catalyzed by WO3/graphene nanocomposites and the mechanism” Ceramics International (vol. 42, no. 14, pp. 15235–15241)
Taha AA, Li F (2014) “Porous WO3–carbon nanofibers: high-performance and recyclable visible light photocatalysis” Catal Sci Technol (vol. 4, no. 10, pp. 3601–3605)
Song B, Wang T, Sun H, Shao Q, Zhao J, et al. (2017) “Two-step hydrothermally synthesized carbon nanodots/WO3 photocatalysts with enhanced photocatalytic performance” Dalton Trans (vol. 46, no. 45, pp. 15769–15777)
Jeevitha G, Abhinayaa R, Mangalaraj D, Ponpandian N (2018) “Tungsten oxide-graphene oxide (WO3-GO) nanocomposite as an efficient photocatalyst, antibacterial and anticancer agent” Journal of Physics and Chemistry of Solids (vol. 116, pp. 137–147)
Lee C-G, Javed H, Zhang D, Kim J-H, Westerhoff P, et al. (2018) “Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants” Environ Sci Technol (vol. 52, no. 7, pp. 4285–4293)
Gong Q, Liu Y, Dang Z (2019) “Core-shell structured Fe3O4@GO@MIL-100(Fe) magnetic nanoparticles as heterogeneous photo-Fenton catalyst for 2,4-dichlorophenol degradation under visible light” J Hazard Mater (vol. 371, pp. 677–686)
Liu G, Li L, Xu D, Huang X, Xu X, et al. (2017) “Metal–organic framework preparation using magnetic graphene oxide–β-cyclodextrin for neonicotinoid pesticide adsorption and removal” Carbohydrate Polymers (vol. 175, pp. 584–591)
He R, Zhou J, Fu H, Zhang S, Jiang C (2018) “Room-temperature in situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity” Applied Surface Science (vol. 430, pp. 273–282)
Wu Y, Wang H, Tu W, Liu Y, Tan YZ, et al. (2018) “Quasi-polymeric construction of stable perovskite-type LaFeO3/g-C3N4 heterostructured photocatalyst for improved Z-scheme photocatalytic activity via solid p-n heterojunction interfacial effect” Journal of Hazardous Materials (vol. 347, pp. 412–422)
Jain M, Yadav M, Kohout T, Lahtinen M, Garg VK, et al. (2018) “Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution” Water Resources and Industry (vol. 20, pp. 54–74)
Guo X, Liu Q, Liu J, Zhang H, Yu J, et al. (2019) “Magnetic metal-organic frameworks/carbon dots as a multifunctional platform for detection and removal of uranium” Applied Surface Science (vol. 491, pp. 640–649)
Romain AC, Nicolas J (2010) “Long term stability of metal oxide-based gas sensors for e-nose environmental applications: An overview” Sensors and Actuators B: Chemical (vol. 146, no. 2, pp. 502–506)
Romain A-C, André Ph, Nicolas J (2002) “Three years experiment with the same tin oxide sensor arrays for the identification of malodorous sources in the environment” Sensors and Actuators B: Chemical (vol. 84, no. 2, pp. 271–277)
Ionescu R, Vancu A, Tomescu A (2000) “Time-dependent humidity calibration for drift corrections in electronic noses equipped with SnO2 gas sensors” Sensors and Actuators B: Chemical (vol. 69, no. 3, pp. 283–286)
Wang G, Yang Y, Han D, Li Y (2017) “Oxygen defective metal oxides for energy conversion and storage” Nano Today (vol. 13, pp. 23–39)
O’Regan B, Grätzel M (1991) “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO 2 films” Nature (vol. 353, no. 6346, pp. 737–740)
Yang X, Wolcott A, Wang G, Sobo A, Fitzmorris RC, et al. (2009) “Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting” Nano Lett (vol. 9, no. 6, pp. 2331–2336)
Hoang S, Guo S, Hahn NT, Bard AJ, Mullins CB (2012) “Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires” Nano Lett (vol. 12, no. 1, pp. 26–32)
Kenney MJ, Gong M, Li Y, Wu JZ, Feng J, et al. (2013) “High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation” Science (vol. 342, no. 6160, pp. 836–840)
Wang G, Wang H, Ling Y, Tang Y, Yang X, et al. (2011) “Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting” Nano Lett (vol. 11, no. 7, pp. 3026–3033)
Wang H, Qian F, Wang G, Jiao Y, He Z, et al. (2013) “Self-biased solar-microbial device for sustainable hydrogen generation” ACS Nano (vol. 7, no. 10, pp. 8728–8735)
Yang Y, Ling Y, Wang G, Liu T, Wang F, et al. (2015) “Photohole induced corrosion of titanium dioxide: Mechanism and solutions” Nano Lett (vol. 15, no. 10, pp. 7051–7057)
Cheng L, Hou Y, Zhang B, Yang S, Guo JW, et al. (2013) “Hydrogen-treated commercial WO3 as an efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells” Chem Commun (vol. 49, no. 53, pp. 5945–5947)
Lu X, Yu M, Wang G, Zhai T, Xie S, et al. (2013) “H-TiO2@MnO2//H-TiO2@C core–shell nanowires for high prformance and flexible asymmetric supercapacitors” Advanced Materials (vol. 25, no. 2, pp. 267–272)
Kang Q, Cao J, Zhang Y, Liu L, Xu H, et al. (2013) “Reduced TiO2 nanotube arrays for photoelectrochemical water splitting” J Mater Chem A (vol. 1, no. 18, pp. 5766–5774)
Liang Z, Zheng G, Li W, Seh ZW, Yao H, et al. (2014) “Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure” ACS Nano (vol. 8, no. 5, pp. 5249–5256)
Tan H, Zhao Z, Niu M, Mao C, Cao D, et al. (2014) “A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity” Nanoscale (vol. 6, no. 17, pp. 10216–10223)
Ma D, Shi J-W, Zou Y, Fan Z, Ji X, et al. (2017) “Highly efficient photocatalyst based on a CdS quantum Dots/ZnO nanosheets 0D/2D heterojunction for hydrogen evolution from water splitting” ACS Appl Mater Interfaces (vol. 9, no. 30, pp. 25377–25386)
Lam DV, Won S, Shim HC, Kim J-H, Lee S-M (2019) “Turning cotton into tough energy textile via metal oxide assisted carbonization” Carbon (vol. 153, pp. 257–264)
Younis SA, Kwon EE, Qasim M, Kim K-H, Kim T, et al. (2020) “Metal-organic framework as a photocatalyst: Progress in modulation strategies and environmental/energy applications” Progress in Energy and Combustion Science (vol. 81, pp. 100870)
Li R, Wu S, Wan X, Xu H, Xiong Y (2016) “Cu/TiO2 octahedral-shell photocatalysts derived from metal–organic framework@semiconductor hybrid structures” Inorg Chem Front (vol. 3, no. 1, pp. 104–110)
Kidanemariam A, Lee J, Park J (2019) “Recent innovation of metal-organic frameworks for carbon dioxide photocatalytic reduction” Polymers (vol. 11, no. 12, pp. 2090)
Senanayake SD, Ramírez PJ, Waluyo I, Kundu S, Mudiyanselage K, et al. (2016) “Hydrogenation of CO2 to methanol on CeOx/Cu(111) and ZnO/Cu(111) catalysts: Role of the metal–oxide interface and importance of Ce3+ site” J Phys Chem C (vol. 120, no. 3, pp. 1778–1784)
Gao S, Lin Y, Jiao X, Sun Y, Luo Q, et al. (2016) “Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel” Nature (vol. 529, no. 7584, pp. 68–71)
Humayun M, Qu Y, Raziq F, Yan R, Li Z, et al. (2016) “Exceptional visible-light activities of TiO2-coupled N-doped porous perovskite LaFeO3 for 2,4-dichlorophenol decomposition and CO2 conversion” Environ Sci Technol (vol. 50, no. 24, pp. 13600–13610)

Most read articles by the same author(s)

1 2 > >>