Impact of Evaporative cooling technology & Post-harvest treatments on shelf life and quality of tomato of two different harvesting stages (Solanum lycopersicum var. Pearson)

Main Article Content

Sayed Samiullah Hakimi
Ravinder Raina
Yashpal Singh Saharawat

Abstract

The Zero Energy Cool Chamber (ZECC) is the needed evaporative cooling system introduced as one of the economical small scale on-farm storage in Afghanistan for enhancing the shelf life of tomato and other fresh crops. Tomato is one of the highest value crops, and due to excellent flavor, higher juice, and pulp content of tomato fruits of “Pearson” variety makes it further valuable. Hence, this study aims to understand the effect of ZECC and postharvest treatments on shelf life and quality of tomato’s fruits harvested at turning and light red colors’ stages. Fruits were treated with different concentrations of CaCl2 and mint leaf extract solutions and kept in both ZECC and ambient storages. The shelf life of tomato fruits extended up to 29 days under T4 (turning color fruits + 6% CaCl2 + ZECC). Under the same treatment, the highest firmness as 840.0 grcm-2   and the lowest PLW, Decay Losses and TSS were recorded as 1.80%, 0.0% and 4.400 brix, respectively; on the 20th day of the storage. The lowest shelf life under T11 (Light red color fruits + distilled water dip + Ambient condition) was about 8 days. As a result, the ZECC as an evaporative cooling system significantly enhanced the shelf life and maintained the quality of tomato fruits harvested at the turning color stage treated with 6% CaCl2.

Article Details

How to Cite
Hakimi, S. S. ., Raina, R. . and Saharawat, Y. S. . (2021) “Impact of Evaporative cooling technology & Post-harvest treatments on shelf life and quality of tomato of two different harvesting stages (Solanum lycopersicum var. Pearson)”, Journal of Ecoscience and Plant Revolution. Okinawa, Japan, 2(1), pp. 8-16. doi: 10.37357/1068/jepr.2.1.02.
Section
Plant Stadies

References

Rayaguru K, Khan MK, Sahoo NR (2010) “Water use optimization in zero energy cool chambers for short term storage of fruits and vegetables in coastal area” J Food Sci Technol (vol. 47, no. 4, pp. 437–441) https://doi.org/10.1007/s13197-010-0072-7

Lal Basediya A, Samuel DVK, Beera V (2013) “Evaporative cooling system for storage of fruits and vegetables - a review” J Food Sci Technol (vol. 50, no. 3, pp. 429–442) https://doi.org/10.1007/s13197-011-0311-6

National Statistics and Information Authority (NSIA) - Afghanistan (2019) “Afghanistan statistical yearbook 2018-19” (https://www.nsia.gov.af:8080/wp-content/uploads/2019/11/Afghanistan-Statistical-Yearbook-2018-19_compressed.pdf) Accessed: 1 December 2020

Dandago MA, Gungula D, Nahunnaro H (2017) “Effect of postharvest dip and storage condition on quality and shelf life of tomato fruits (Lycopersicon esculentum Mill) in Kura, Nigeria” Pakistan Journal of Food Sciences (vol. 27, no. 1, pp. 61–71)

Dhall RK, Singh P (2013) “Effect of Ethephon and Ethylene Gas on Ripening and Quality of Tomato (Solanum Lycopersicum L.) during Cold Storage” Journal of Nutrition & Food Sciences (vol. 3, no. 6, pp. 1–7) https://doi.org/10.4172/2155-9600.1000244

Dumas Y, Dadomo M, Lucca GD, Grolier P (2003) “Effects of environmental factors and agricultural techniques on antioxidantcontent of tomatoes” Journal of the Science of Food and Agriculture (vol. 83, no. 5, pp. 369–382) https://doi.org/10.1002/jsfa.1370

Pinheiro SCF, Almeida DPF (2008) “Modulation of tomato pericarp firmness through pH and calcium: Implications for the texture of fresh-cut fruit” Postharvest Biology and Technology (vol. 47, no. 1, pp. 119–125) https://doi.org/10.1016/j.postharvbio.2007.06.002

Saraswathy S et al, Preethi TL, Balasubramanyan S, Suresh J, Revathy N, et al. (2013) “Postarvest management of horticultural crops” Jodhpur, Agrobios India. 36–37 p. ISBN: 978-81-7754-322-3

Islam MP, Morimoto T, Hatou K (2012) “Storage behavior of tomato inside a zero energy cool chamber” Agricultural Engineering International: CIGR Journal (vol. 14, no. 4, pp. 209–217)

Islam MP, Morimoto T (2012) “Zero Energy Cool Chamber for Extending the Shelf-Life of Tomato and Eggplant” Japan Agricultural Research Quarterly: JARQ (vol. 46, no. 3, pp. 257–267) https://doi.org/10.6090/jarq.46.257

Abiso E, Satheesh N, Hailu A (2015) “Effect of storage methods and ripening stages on postharvest quality of tomato (Lycopersicom esculentum Mill) cv. Chali” Annals. Food Science and Technology 2015 Targoviste, Romania, Valahia University Press, vol. 16 - pp. 127–137. (https://pdfs.semanticscholar.org/9809/8738e65c315b8a4efc4c4adede4d821448ac.pdf?_ga=2.219181342.643294641.1587536878-321628801.1585267670) Accessed: 1 November 2019

Arthur E, Oduro I, Kumah P (2015) “Postharvest Quality Response of Tomato (Lycopersicon Esculentum, Mill) Fruits to Different Concentrations of Calcium Chloride at Different Dip- Times” American Journal of Food and Nutrition (pp. 1–8)

Al-Sum BA (2013) “Antimicrobial activity of the aqueous extract of mint plant” SJCM (vol. 2, no. 3, pp. 110) https://doi.org/10.11648/j.sjcm.20130203.19

Moghaddam M, Pourbaige M, Tabar HK, Farhadi N, Hosseini SMA (2013) “Composition and Antifungal Activity of Peppermint (Mentha piperita) Essential Oil from Iran” Journal of Essential Oil Bearing Plants (vol. 16, no. 4, pp. 506–512) https://doi.org/10.1080/0972060X.2013.813265

A LB, Dv S, V B (2011) “Evaporative cooling system for storage of fruits and vegetables - a review.” J Food Sci Technol (vol. 50, no. 3, pp. 429–442) https://doi.org/10.1007/s13197-011-0311-6

Senevirathna P, Daundasekera W a. M (2010) “Effect of Senevirathna P, Daundasekera W a. M (2010) “Effect of postharvest calcium chloride vacuum infiltration on the shelf life and quality of tomato (cv. ’Thilina’)” Ceylon Journal of Science (Biological Sciences) (vol. 39, no. 1, pp. 35–44) https://doi.org/10.4038/cjsbs.v39i1.2351

Moneruzzaman KM, Hossain ABMS, Sani W, Saifuddin M, Alenazi M (2009) “Effect of harvesting and storage conditions on the post harvest quality of tomato (Lycopersicon esculentum Mill) cv. Roma VF” Australian Journal of Crop Science (vol. 3, no. 2, pp. 113–121)

Casierra-Posada F, Aguilar-Avendaño ÓE (2008) “Quality of tomato fruits (Solanum lycopersicum L.) harvested at different maturity stages” Agronomía Colombiana (vol. 26, no. 2, pp. 300–307)

Parker R, Maalekuu B (2013) “The effect of harvesting stage on fruit quality and shelf-life of four tomato cultivars (Lycopersicon esculentum Mill).” undefined https://doi.org/10.5251/ABJNA.2013.4.3.252.259 (/paper/The-effect-of-harvesting-stage-on-fruit-quality-and-Parker-Maalekuu/a0df4840e653e4e8394bfd352330722f71aa105c) Accessed: 17 May 2021